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A Soil Moisture Monitoring Network to Assess Controls on Runoff Generation During 

Atmospheric River Events 

 

Abstract  

Soil moisture is a key modifier of runoff generation from rainfall excess, including during extreme 

precipitation events associated with Atmospheric Rivers (ARs). This paper presents a new, 

publicly available dataset from a soil moisture monitoring network in Northern California’s 

Russian River Basin, designed to assess soil moisture controls on runoff generation under AR 

conditions. The observations consist of 2-minute volumetric soil moisture at 19 sites and 6 depths 

(5, 10, 15, 20, 50, and 100 cm), starting in summer 2017. The goals of this monitoring network are 

to aid the development of research applications and situational awareness tools for Forecast-

Informed Reservoir Operations at Lake Mendocino. We present short analyses of these data to 

demonstrate their capability to characterize soil moisture responses to precipitation across sites 

and depths, including time series analysis, correlation analysis, and identification of soil saturation 

thresholds that induce runoff. Our results show strong inter-site Pearson’s correlations (>0.8) at 

the seasonal timescale. Correlations are strong (>0.8) during events with high antecedent soil 

moisture and during drydown periods, and weak (<0.5) otherwise. High event runoff ratios are 

observed when antecedent soil moisture thresholds are exceeded, and when antecedent runoff is 

high. Although local heterogeneity in soil moisture can limit the utility of point source data in 

some hydrologic model applications, our analyses indicate three ways in which soil moisture data 

are valuable for model design: (1) sensors installed at 6 depths per location enable us to identify 

the soil depth below which evapotranspiration and saturation dynamics change, and therefore 

choose model soil layer depths, (2) time series analysis indicates the role of soil moisture processes 
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in controlling runoff ratio during precipitation, which hydrologic models should replicate, and (3) 

spatial correlation analysis of the soil moisture fluctuations helps identify when and where 

distributed hydrologic modeling may be beneficial.  

 

Keywords 

Atmospheric river, correlation analysis, hydrologic model evaluation, precipitation, Russian River 

Basin, soil moisture, streamflow, time series 

 

1. Introduction  

 Atmospheric rivers (ARs) are concentrated bands of water vapor transport in the lower 

atmosphere, which cause heavy and sustained precipitation upon landfall. In California, 10-50% 

of precipitation occurs during AR events (Dettinger, Ralph, Das, Neiman, & Cayan, 2011; Kim et 

al., 2013), and some strong AR events drive floods, debris flows and associated damages 

(Corringham, Ralph, Gershunov, Cayan, & Talbot, 2019; Young, Skelly, & Cordeira, 2017). 

Therefore, accurate forecasting of ARs and their hydrologic impacts is essential for reservoir 

operations and flood control. Recognition of forecast value is leading to greater adaptivity in 

reservoir management, such that reservoirs are maintained at a higher base level, but drawn down 

in advance of incoming storms (Miao, Chen, & Hossain, 2016; Jasperse et al., 2017; Ralph, 

Jasperse, Talbot, & Wilson, 2019; Talbot, Ralph, & Jasperse, 2019). 

 For large-scale hydrologic modeling, such as for reservoir inflow forecasting, spatially 

distributed models are a popular choice (Archfield et al., 2015). These models represent hydrologic 

processes at the land surface, in soils, groundwater, and in the stream network. Soil moisture 

strongly controls runoff from the land surface into streams. Quantitative measurements of this soil 
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moisture control are vital to forecast runoff in regions where flooding is often caused by a single 

extreme precipitation event (Berghuijs, Woods, Hutton, & Sivapalan, 2016), such as California 

(Cao, Mehran, Ralph, & Lettenmaier, 2019). Multiple studies show soil saturation can quickly 

trigger runoff generation (e.g., Penna, Tromp-van Meerveld, Gobbi, Borga, & Dalla Fontana, 

2011), and spatial correlations in soil moisture modify the hydrologic response at the watershed 

scale (McMillan, 2012; Western et al., 2004). Modeling and observational studies in California 

showed that wetter antecedent soil moisture conditions resulted in higher runoff ratios (Cao et al., 

2019; Ralph, Coleman, Neiman, Zamora, & Dettinger, 2013).  

 Despite the importance of accurate representation of soil moisture, model calibration 

typically only uses meteorological variables and gauged flow data. Unlike precipitation (e.g., 

Schaake, Henkel, & Cong, 2004; Willie et al., 2017), soil moisture information is less frequently 

used in models because measurements are often sparse and values are too heterogeneous for 

meaningful comparisons between point measurements and distributed hydrologic models (Branger 

& McMillan, 2019). However, Pathiraja, Westra, & Sharma (2012) showed that design flood 

events were underestimated when antecedent soil moisture was not properly simulated. This 

problem is exacerbated by the scarcity of deep subsurface soil moisture measurements (> 50 cm), 

such that a surplus or deficit in soil moisture that controls hydrologic responses cannot be 

effectively characterized (Curtis, Flint, & Stern, 2019).  

 This paper presents a new and publicly available dataset collected in near real time, i.e., 

collected and made available within an hour. The dataset is collected from a denser network 

installed in the Russian River Basin in Northern California, to inform reservoir operations in the 

Lake Mendocino Sub-basin. The goals of this network are to: 1) improve soil moisture 

representation in distributed hydrologic model forecasts under AR conditions, 2) improve overall 
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monitoring of the soils in the watershed for situational awareness (as in Hatchett et al., 2020), and 

3) advance our process-based understanding of the role of soils in the water cycle in this basin. 

This paper focuses on the first goal and highlights the value of spatially and temporally dense 

observations. To assess this network in that context, we first describe the impact of temporal and 

spatial patterns of soil moisture on runoff generation during AR events. The aim of this analysis is 

to recommend which features of the soil moisture response should be reproduced by a distributed 

model, for accurate forecasting of runoff volume. 

 

2. CW3E Soil Moisture Observation Network  

2.1. Network Description 

 The soil moisture monitoring network was installed in summer and fall 2017 as part of a 

wider Center for Western Weather and Water Extremes (CW3E) network of hydrometeorological 

instrumentation that supports research, operations, and situational awareness objectives in 

California. Among other parameters, the CW3E network monitors soil moisture, precipitation, and 

streamflow primarily in the Lake Mendocino watershed, a sub-basin of the Russian River 

watershed (Figure 1). A dense monitoring network is an essential component of Lake Mendocino 

Forecast-Informed Reservoir Operations (FIRO; Jasperse et al., 2017).  

 This study also incorporates soil moisture and precipitation data from the National Oceanic 

and Atmospheric Administration Earth System Research Laboratory (NOAA ESRL) 

Hydrometeorology Testbed (HMT), a national program focused on providing access to 

complementary datasets to enhance weather and water forecasts and accelerate the transition of 

cutting-edge research into operations. These networks are a part of the Russian River 

Hydrometeorological Observation Network (RHONET; described in detail in Sumargo et al., 
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2020a). Data from the CW3E network are ingested in near real time in the NOAA Physical Science 

Division (PSD) data repository, in the Meteorological Assimilation Data Ingest System (MADIS), 

and in the California Data Exchange Center (CDEC).  

The RHONET soil moisture monitoring network used probe types and installation methods 

consistent with the national HMT network (Zamora, Ralph, Clark, and Schneider, 2011). The 

CW3E network installation also considered the areas covered by five stream tributaries in the Lake 

Mendocino Sub-basin (Figure 1). Soil moisture is measured as volumetric water content (VWC)-

-volume of water measured in a unit volume of soil--using Campbell Scientific CS616 sensors 

(Campbell Scientific, Inc., 2016) at depths of 5, 10, 15, 20, 50, and 100 cm at 6 CW3E surface 

meteorological stations (Table 1). Depths were chosen to correspond with the pre-existing HMT 

network, which has 13 stations within the Russian River watershed (White et al., 2013). The 

availability of measurement from 5 cm to 100 cm provides a more comprehensive vertical profile 

of soil water storage, from shallow to root zone.  

CW3E station locations were chosen to fill the gaps between the existing HMT stations 

and ensure representativeness in key soil parameters for hydrological modeling, including the 

Gridded Surface/Subsurface Hydrologic Analysis model (Downer & Ogden, 2004) and the 

National Water Model (Gochis et al., 2016), which are an integral part of FIRO. This was done by 

conducting a k-means cluster analysis (MacQueen, 1967) for 30-m grid cells in the Lake 

Mendocino watershed for the following parameters: slope; elevation; clay content; and silt content. 

Six clusters separated the watershed into the following types: (C1) flat and clay-rich; (C2) flat to 

moderate slopes with moderate clay content; (C3) steep slopes at middle elevations with moderate 

to high clay content; (C4) very sandy soils over various slopes and elevations; (C5) steep slopes at 

mid to upper elevations with very sandy soils; and (C6) high elevation steep slopes with moderate 
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clay content (Table S1 in the Supporting Information). Existing HMT sites covered the first two 

clusters, and the six CW3E sites, via partnerships with landowners and permits from the Bureau 

of Land Management and the USACE, were added to broaden the coverage to the four additional 

clusters (Table 1). During the siting visits and at installation, the field team surveyed the 

coordinates, slope angles, and elevations using the Theodolite tool (Hunter Research and 

Technology, LLC, 2009) and maps of soil parameters and topography (Figure S1 in the Supporting 

Information) in order to ensure the sites as well as the measurements were as representative as 

possible of the types of surrounding environment, topography, and soil makeup. 

Precipitation, soil moisture, and other meteorological parameters measured at the six 

telemetered sites are recorded every two minutes and downloaded each hour. Stream stage data is 

manually downloaded from Solinst level loggers at CW3E stream gauges approximately twice per 

year and converted to discharge using rating curves. Soil moisture and streamflow data for this 

study undergo manual quality control that includes identifying gaps as well as flagging and 

removing questionable observations, i.e., outside a realistic range (0-1) or with improbable jumps 

between timestamps (a VWC increase of >10% between timestamps; Dorigo et al., 2013). 

 

2.2. Soil Moisture Measurement Uncertainties 

 Any in situ hydrologic measurements involve uncertainties, including those related to 

measurement error and data treatment, which can propagate to the measurement values and reduce 

the information content of subsequent analyses (Westerberg & McMillan, 2015).  

The CS616 soil moisture probe used by the CW3E network measures the dielectric 

permittivity of the soil to determine water content (Campbell Scientific, Inc., 2016). The 

manufacturer’s specifications state that the probe does not require calibration for low-salinity soils 
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with saturated bulk electrical conductivity <0.5 dS/m and has a precision of better than 0.1% VWC 

and a water content accuracy of ±2.5% VWC using standard calibration with bulk electrical 

conductivity. Probe-to-probe variability is ±0.5% VWC in dry soil and ±1.5% in wet soil. Of 

greater concern is the potential for systematic errors. Tests of the CS616 probe show substantial 

influence of soil texture on the soil moisture measurements, leading to an estimate of uncertainty 

(root-mean-squared error) of 14% compared to gravimetric control measurements (Rüdiger et al., 

2010). We therefore used ±14% as an estimate of the uncertainty in our soil moisture 

measurements. Soil moisture measurements are susceptible to further systematic error sources, 

such as flexing of the probe rods during installation, imperfect contact between the probes and 

soil, and measurement uncertainty related to the spatial heterogeneity in soil texture. 

We therefore designed our analyses to be robust to systematic error sources, by normalizing 

the soil moisture data between wilting point and field capacity (Section 3.2). Using this 

normalization, our analyses of response time, saturation, diurnal cycles, thresholds and spatial 

correlation (Sections 3.3 to 3.7) are robust to multiplicative biases in the soil moisture values. 

However, the normalization would not be effective if biases exist that vary strongly with soil 

moisture magnitude. Soil moisture analyses have additional uncertainty due to missing values after 

sensor failure or where data is flagged during quality control. For our network the proportion of 

missing values was low (2.96%). 

 

3. Methods  

3.1. Precipitation and AR Event Identification 

The start and end times of a precipitation (P) event often varies by minutes to ~1 hour even 

between sites within the same watershed. To simplify this problem, P events are identified using 
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mean-areal precipitation (MAP) (Figure 2)—defined as the average of six CW3E and three HMT 

stations located within the Lake Mendocino sub-basin. An event is defined as a period when 

precipitation (MAP > 0) occurs for at least 6 hours within the event duration, and when no 

precipitation gaps (MAP = 0) occur for more than 12 consecutive hours. Based on these criteria, 

51 events occurred in water years (WYs) 2018-2019.  

The AR events are identified using the bulk water vapor flux derived from wind and 

integrated water vapor (IWV) records from the Bodega Bay AR Observatory (ARO; White et al., 

2013, Figure 1 upper left). The bulk water vapor flux is computed as follows:  

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑊𝑊𝑊𝑊 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐼𝐼𝐼𝐼𝐼𝐼 ∗Ū750-1250 (1) 

where Ū750-1250 is the average total wind speed, regardless of direction, in the 750-1250m range of 

altitudes. This is the atmospheric layer most associated with rainfall at the nearby coastal 

mountains (Neiman, Ralph, White, Kingsmill, & Persson, 2002). To be classified as an AR, bulk 

water vapor flux is required to be at minimum 20 cm m s-1, with an IWV value of at least 2 cm, 

for at least 8 consecutive hours (Ralph et al., 2013; Ralph et al., 2019a). The bulk water vapor flux 

is a proxy measurement for integrated vapor transport, the accepted quantity with which to identify 

ARs (e.g., Neiman, White, Ralph, Gottas, & Gutman, 2009; Smith, Yuter, Neiman, & Kingsmill, 

2010; Hughes et al., 2014; Ralph et al., 2019b). Based on these criteria and the available ARO 

data, 26 of the 51 events in WYs 2018-2019 were AR events. (Note that 249 hours of ARO data 

were missing in the wet season (October-April) of WY 2018 and 1047 hours were missing in the 

wet season of WY 2019.) 

 

3.2. Normalization of Soil Moisture Time Series 
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Soil moisture magnitudes are often locally variable and dependent on soil texture, even 

when dynamics are consistent, and therefore VWC normalization minimizes the impacts of VWC 

bias specific to the site. High soil moisture values (VWC > 0.6) at some locations (Figure 3) 

indicate possible issues related to the sensor environment or sensor malfunction. For instance, 

springs and inundated mudcracks have been observed near some locations, which may contribute 

to the high readings. Consequently, prior to our analyses, we normalize the soil moisture VWC 

between the permanent wilting point (VWCPWP) and the field capacity (VWCFC) in order to 

minimize the impacts of site-specific biases. The normalized VWC is determined as:  

𝑉𝑉𝑉𝑉𝑉𝑉𝑛𝑛 = 𝑉𝑉𝑉𝑉𝑉𝑉−𝑉𝑉𝑉𝑉𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃
𝑉𝑉𝑉𝑉𝑉𝑉𝐹𝐹𝐹𝐹−𝑉𝑉𝑉𝑉𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃

 (2) 

VWCFC was identified as the secondary (higher) peak of the binned frequency distribution of bi-

modal VWC, while VWCPWP was identified as the lowest VWC on record. Physically, VWCFC 

represents the amount of soil water storage after excess water has drained, while VWCPWP 

represents the minimum soil water storage below which plants begin to wilt (Curtis et al., 2019).  

 

3.3. Soil Moisture Response Time to Precipitation Event 

 Lag correlation analysis between local precipitation time series and VWCn time series at 

different soil depths from 5 cm to 100 cm is conducted to assess the variation in soil moisture 

response time to precipitation across different soil depths. This analysis uses Pearson's correlation 

(Pearson, 1895), which measures the strength and direction of linear relationships between two 

time series. The lag correlation identifies the time lag between two time series that maximizes the 

cross-correlation (Yilmaz, Gupta, & Wagener, 2008), as one of the time series is shifted in time.   

 

3.4. Diurnal Cycle of Soil Moisture  
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The presence of the diurnal cycle indicates the influence of external processes on the 

observed soil moisture fluctuations, particularly evapotranspiration (Jackson, 1973). We employ 

the Fourier Transform (FT) periodogram using Eisenman (2006) script—based on the discrete Fast 

FT algorithm (Frigo & Johnson, 1998)—to evaluate the strength of VWC fluctuations at different 

periods. For example, if a time series has a discernible spectral power at 24-hour period, typically 

with 30% more power than the neighboring frequencies/periods (Lundquist & Cayan, 2002), then 

the time series exhibits a diurnal cycle. 

 

3.5. Cross-Depth Soil Moisture Saturations and T-Statistics 

 In a soil moisture time series, saturated soil moisture often appears as a persistent high 

VWC plateau. However, this plateau-like feature does not necessarily have a constant VWC value 

and may include small fluctuations. To account for this variability, we use a two-tiered percentile 

analysis to determine if the soil is saturated: 1) the VWC exceeds its all-time (WYs 2018-2019) 

99th percentile, or 2) the VWC exceeds its all-time 95th percentile and its standard deviation at 

times t to t+24 hours is less than 0.1% of its all-time standard deviation. The saturation VWC 

identification is repeated for all 6 depths and 9 sites in the Lake Mendocino Sub-basin (Table 1).  

Additionally, statistical tests are used to identify which depths show differences in soil 

moisture saturations. Here we compute the two-sample t-test to exemplify whether the population 

mean (µ) of saturation VWC at one depth and that at another depth are statistically distinct 

(Snedecor & Cochran, 1989; National Institute of Standards and Technology, 2012). Rejection of 

the null hypothesis (H0) occurs when the samples do not provide sufficient evidence that the two 

populations are statistically distinct at the prescribed significance level, which in our case is at the 

99% significance level (p-value < 0.01). A rejection of H0 means the alternate hypothesis (Ha) is 
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favored, indicating that the two populations are statistically distinct. The test is repeated for 

different combinations: 5-cm VWC vs. 10-cm VWC, 5-cm VWC vs. 15-cm VWC, …., and 50-

cm VWC vs. 100-cm VWC. We additionally conduct the test for: 1) all time VWCs, including 

saturation and non-saturation VWCs, 2) the all-time shallow-layer aggregate VWC (5-20 cm) vs. 

the deep-layer aggregate VWC (50-100 cm), and 3) the power spectra of VWCs, in order to verify 

the consistency in shallow layers vs. deep layers distinction. The computation is performed 

individually for the 9 CW3E and HMT sites in the Lake Mendocino Sub-basin.  

 

3.6. Impact of Antecedent Soil Moisture on Event Runoff Ratio 

We identify the impact of soil moisture and other antecedent conditions in our network as 

follows (Figure 3). Watersheds often display threshold behavior, which is characterized by a rapid 

increase in the event runoff coefficient (RC) after reaching a certain antecedent soil moisture value 

(Penna et al., 2011; McMillan et al., 2014). Event antecedent VWCn was defined as the VWCn 

prior to the start of the event. The event total runoff (R) from the nearest gauge is divided by the 

drainage area (AD) and, subsequently, by the event total P to obtain the event RC: 

𝑅𝑅𝑅𝑅 =
∑ 𝑅𝑅(𝑡𝑡)

𝐴𝐴𝐷𝐷𝑡𝑡

∑ 𝑃𝑃(𝑡𝑡)𝑡𝑡
 (3) 

where t denotes the elapsed time within an event. Event antecedent VWCn at each soil moisture 

sensor is then plotted against the RC for the nearest flow gauge (hereby threshold plot). Additional 

parameters, such as antecedent flow/runoff per unit drainage area (Ra), event total precipitation 

(Ptotal), and days from October 1st (the start of WY), can be added (e.g., as color codes) to the 

threshold plot to explore whether these parameters are related to the soil moisture vs. runoff 

relationship.  
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 Additionally, we assess the strength of linear relationship between antecedent VWCn and 

RC by computing  the coefficient of determination (R2) between RC and the linear fit (𝑅𝑅𝑅𝑅� ) of event 

antecedent VWCn vs. RC. 𝑅𝑅𝑅𝑅�  is determined as: 

𝑅𝑅𝑅𝑅� = 𝑎𝑎 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑉𝑉𝑉𝑉𝑉𝑉𝑛𝑛 + 𝑏𝑏 (4) 

where a is the slope and b is the intercept. This computation is done for each site individually. The 

R2 also indicates the amount of RC variance accounted for by the antecedent VWCn. 

 

3.7. Spatial Pattern Identification  

The spatial correlation of RHONET soil moisture observations indicates the degree of 

covariance of soil moisture fluctuations across the basin, which controls the relationship between 

mean soil moisture and drainage (McMillan, 2012). We cross-correlate the 2-minute VWC at 10-

cm depth at each of the six CW3E stations with all other stations in the Russian River Basin. 

Particularly, BCC is used as the baseline in our analysis due to the relatively low amount of missing 

data and its spatial representativeness in the watershed. The 10-cm depth is chosen because of its 

availability at all sites (Table 1) and its proximity to the surface—thereby minimizing the effect of 

local soil characteristics on the infiltration rate.  

Pearson’s correlation analysis (Pearson, 1895) is performed at different seasons to reveal 

the seasonal variations in the degree of co-variability: autumn (October–December), winter 

(January–March), spring (April–June), and summer (July–September). (Note that these seasons 

are tailored for WY format, which begins in October, and are offset from the traditional 

meteorological seasons.) Subsequently, the standard N-2 degrees of freedom (dof) associated with 

the Pearson’s correlation is revised following Panofsky & Brier (1958) formulation to account for 

the presence of autocorrelation (Rai, 2019), which reduces the independent sample and affects the 
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significance value. This revision scales the dof with the e-folding time decay of the autocorrelation 

(Te)—where autocorrelation drops to 1/e—such that:  

𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑁𝑁∗𝑑𝑑𝑑𝑑
2∗𝑇𝑇𝑒𝑒

 (5) 

where N is the sample size, dt is the time interval between data. 

Additionally, the correlation analysis is performed at event time scales to investigate the 

spatial variation in soil moisture during and after events. The latter represents the drydown period 

responsible for setting up the antecedent soil moisture condition for the following event. To 

analyze event time scales, while minimizing the effects of higher-frequency (sub-daily to daily) 

fluctuations, soil moisture VWCn is cross-correlated at ±7-day centered moving windows, such 

that: 

𝐶𝐶𝐶𝐶(𝑡𝑡) =
𝑁𝑁∗�∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑛𝑛(𝑥𝑥1,𝑧𝑧,𝑡𝑡)∗𝑉𝑉𝑉𝑉𝑉𝑉𝑛𝑛(𝑥𝑥2,𝑧𝑧,𝑡𝑡)𝑡𝑡+7𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑡𝑡−7𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �−�∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑛𝑛(𝑥𝑥1,𝑧𝑧,𝑡𝑡)𝑡𝑡+7𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑡𝑡−7𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �∗(∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑛𝑛(𝑥𝑥2,𝑧𝑧,𝑡𝑡)𝑡𝑡+7𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑡𝑡−7𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 )

��𝑁𝑁∗∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑛𝑛2(𝑥𝑥1,𝑧𝑧,𝑡𝑡)𝑡𝑡+7𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑡𝑡−7𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 −(∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑛𝑛(𝑥𝑥1,𝑧𝑧,𝑡𝑡)𝑡𝑡+7𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑡𝑡−7𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 )2�∗(𝑁𝑁∗∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑛𝑛2(𝑥𝑥2,𝑧𝑧,𝑡𝑡)𝑡𝑡+7𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑡𝑡−7𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 −(∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑛𝑛(𝑥𝑥2,𝑧𝑧,𝑡𝑡)𝑡𝑡+7𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑡𝑡−7𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 )2)
 (6) 

where CC is the correlation coefficient, N denotes the sample size, t denotes a specific point in 

time in days, z denotes the soil depth, x1 and x2 denote sites 1 and 2, respectively. (Note that the 

correlation analyses described here are not intended to establish a causal relationship, but as a 

metric to determine whether the VWCs at the paired sites fluctuate in unison.)  

 

4. Results and Discussion 

4.1. Visualization of Soil Moisture Series 

The time series of soil moisture at selected stations over a WY and during an atmospheric 

river event is useful to examine water dynamics and soil drainage (Figure 4). Boyes Creek Canyon 

(BCC), North Cow Mountain (NCM), and Potter Valley Central (pvc) are chosen to represent 

different environments existing in the basin, e.g., riparian (BCC), montane/hillslope (NCM), and 

valley (pvc). Soil moisture shows seasonal patterns of wetting and drying across different parts of 
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the Lake Mendocino Sub-basin and across the observed depths (Figures 4a-c). The plateaus at high 

VWC values during the wet seasons indicate soil saturation, as shown by the 100-cm VWCs of 

>0.6 at BCC (Figures 4a and 4d) and pvc (Figures 4c and 4f).  

During a single event, the VWCs at different depths closely follow the precipitation 

(Figures 4d-f). Qualitatively, the responses from the shallow layers are virtually immediate, while 

those from the deep layers lag by several hours. Lag correlation analysis shows that the delay 

ranges from ~1 day to ~3 days, depending on the soil depth and the site. Averaged over 9 soil 

moisture observation sites in the Lake Mendocino Sub-basin and over 51 events in WYs 2018-

2019, the delay ranges from ~2-3 hours at the near-surface layers (5-10 cm) to ~11 hours at the 

deepest layer (100 cm) (Figure 5). Deeper layers typically experience longer lags, since 

precipitation takes longer time to infiltrate the deeper layers. Similar features to those on Figures 

4a-c are present, with saturation especially evident at deeper soil layers (50–100 cm).  

The percentile analysis suggests that most sites exhibit much more frequent saturation at 

deep layers (50-100 cm) than at shallow layers (5-20 cm). For instance, the VWC profile at each 

of the 50-100-cm depths at BCC exhibits in total >1300 hours of saturation in WYs 2018-2019, 

while that at each of the 5-20-cm depths only exhibits in total <170 hours. An exception occurs at 

NCM, ptv, and pvw, whose time series exhibit infrequent persistent high VWC plateaus. The two-

sample t-tests between different combinations of depths result in the rejections of H0 with p-values 

<0.01 at most sites, except at pvw where only 50-cm and 100-cm depths result in the rejections of 

H0 when tested against the other depths. This result indicates that the VWC saturations at shallow 

layers and those at the deep layers are statistically distinct. 

This difference between shallow- and deep-layer soil moisture is corroborated by the two-

sample t-test of VWCs through the period of record, resulting in the rejection of H0 with p-values 
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<<0.01 in all cases, except in the case of 15 cm vs. 50 cm at ptv. This outcome indicates the 

statistically distinct VWCs between one soil depth and another, except at ptv where the test 

suggests the lack of statistically distinct VWC characteristics between 15-cm and 50-cm depths. 

The test similarly results in the rejection of null hypothesis at all 9 sites in the Lake Mendocino 

Sub-basin when it is conducted between the shallow-layer aggregate (5-20 cm) and the deep-layer 

aggregate (50-100 cm).   

These results demonstrate a clear differentiation between shallow soil moisture (5–20 cm) 

with infrequent saturation and deep soil moisture (50–100 cm) with persistent saturation. 

Furthermore, the power spectra of VWC exemplify discernible evapotranspiration-driven diurnal 

cycles at the shallow layer (10 cm) (Figure 6a), with diurnal spectral powers of at least 69% greater 

than those at the neighboring periods, but not at the deep layer (100 cm) (Figure 6b). The two-

sample t-test conducted on the 10-cm and 100-cm VWC power spectra results in the rejection of 

H0 at most sites with p-values <0.01, except at BCC (p-value = 0.62), confirming the statistical 

distinction between the two layers. However, the failure to reject H0 at BCC merely reflects the 

similar population µ between the two layers, despite the lack of diurnal spectral power at 100-cm 

(Figure 6c). All things considered, this differentiation reflects the fact that shallow layers are more 

exposed to evapotranspiration--an important driver of soil moisture (Pathiraja et al., 2012) and its 

diurnal fluctuation (Jackson, 1973). In a model, this differentiation could be reproduced by using 

two soil layers, and evaluating for the difference in dynamics between the two. 

 

4.2. Impact of Antecedent Soil Moisture on Event Runoff Ratio 

Most locations in the Lake Mendocino Sub-basin exhibit rapid runoff responses when the 

antecedent soil moisture exceeds certain threshold values (Figure 7). This threshold behavior is 
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characterized by the antecedent VWCn values at which RCs begin to increase rapidly, which are 

typically ~0.9-1 (Figures 3 and 7). For instance, averaged over the five sites shown in Figure 7, 

the mean RC associated with antecedent VWCn of >1 is ~2.6 times greater than that associated 

with antecedent VWCn of <1. The VWCn threshold values of ~0.9–1 correspond to the VWCFC 

(Equation 2), above which water drains through the soil under gravity (Figure 7) and the soil 

wetting-up and runoff generation are accelerated (Calder et al., 2002; Zotarelli, Dukes, & Morgan, 

2010; McMillan, 2012). This range of threshold values is consistent with some other studies, which 

found minimal runoffs when the soil saturations were <70-80% (Penna et al., 2011; Radatz, 

Thompson, & Madison, 2013). However, some locations, such as NCM and WDG, do not exhibit 

clear threshold behaviors, as indicated by the low RCs virtually regardless of the antecedent 

VWCn.  

The moderate RCs at relatively dry antecedent VWCn (e.g., some RCs are 0.3–0.6 at VWCn 

of ~0.7 at BCC) and the low RCs at high antecedent VWCn (e.g., some RCs are < 0.1 at VWCn of 

> 1 at all sites) suggest that VWCn and RC do not have a strong linear relationship (R2 < 0.16 for 

all sites), even at VWCn above the threshold values (R2 < 0.22). For this reason, we consider other 

parameters that may control the soil moisture threshold behavior (Section 3.6), specifically the 

antecedent flow/runoff.  

The color shadings in Figure 7 denote the Ra of each event in the record since the beginning 

of WY 2018. In the absence of precipitation, the antecedent runoff is equivalent to the baseflow. 

Baseflow principally comes from groundwater discharge (Wittenberg, 1999; Arnold, Muttiah, 

Srinivasan, & Allen, 2000), so the antecedent runoff is a proxy for groundwater levels and total 

antecedent catchment wetness (Beven, Leedal, Smith, & Young, 2012). This feature helps to 

explain why some events have high antecedent VWCn (> 1) but low RC (< 0.2): these are typically 
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events with low Ra (<0.001 mm). Such events are notable at DRW and HDC, where 14 and 9 out 

of 51 events, respectively, fall into this category (Figure 7). Note that exceptions still exist for 

events with high antecedent soil moisture and flow, but low RC (e.g., at BCC, DRW): an inspection 

on the event dates reveal that these events are relatively small (with event Ptotal < median Ptotal for 

all 51 events) and occur late in the wet season (March-June). This analysis demonstrates the need 

for accurate representation of the groundwater relationship to soil moisture in hydrologic models, 

so events with significant antecedent soil moisture and groundwater influences can be accurately 

predicted.  

 

4.3. Spatial Pattern Identification 

4.3.1. Spatial correlation of soil moisture across the watershed 

Cross-correlations of the 2-minute VWC time series at one site with the other sites in the 

Russian River Basin reveal spatial covariance of soil moisture fluctuations at a seasonal scale 

(Figure 8). In the example of cross-correlations at BCC, strong Pearson’s correlations (> 0.6) with 

>99% statistical significance are observed at most sites for all seasons. Pearson’s correlations are 

strongest in autumn and spring (> 0.8) when dry soils are wetting up, or wet soils are drying down, 

respectively. Correlations are weakest in winter, as soils are relatively wet throughout the basin, 

but have different VWCFC and saturation levels. Consequently, the soil at one site may reach 

saturation more quickly than soil at another site during a storm event, especially since AR rainfall 

can vary across the basin (Cannon et al., 2020). Despite the varying correlation magnitudes, similar 

seasonal patterns are observed when the cross-correlations are performed at the other five CW3E 

stations (not shown), so the choice of site is trivial in this seasonal correlation analysis. This 
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similarity reflects the influence of precipitation on the seasonal soil moisture wet-up and dry-down 

processes in the watershed. 

At the event timescale, strong VWC correlations throughout the basin are observed when 

the antecedent VWCs and event P total and/or intensity are also high, such as during the early 

April 2018 AR event (Hatchett, 2018) discussed in the following sub-section. While dynamics can 

diverge during inter-storm periods, cool-season precipitation events, particularly ARs, drive 

simultaneous soil moisture peaks across all sensors. Therefore, during AR events, soils throughout 

entire basins may reach runoff thresholds at similar times and have greater impacts on downstream 

water management operations and communities.  

Similar patterns are observed at the other soil depths, with relatively comparable 

correlation magnitudes at shallow layers (5–20 cm) and low correlation magnitudes at deeper 

layers (50–100 cm; not shown). This cross-depth variation reflects the similarity of soil moisture 

behavior at the shallow layers as well as the presence of other factors in the deeper layers, such as 

the longer water infiltration time and the presence of bedrock (e.g., at NCM), springs (e.g., at 

HDC), or mudcracks (e.g., at DRW).      

  

4.3.2. Event-scale spatial correlation of soil moisture 

 Soil moisture cross-correlations, which exhibit large swings associated with AR events, 

tend to converge at values > 0.8 during AR events, most notably during the February 28–March 4 

(non-AR) and the April 5–8 (AR) events (Figure 9). These convergences coincide with very wet 

antecedent soil conditions (VWCn > 1) at most sites. High-correlation convergence also occurs 

with prolonged drydown periods following some of the events, such as in late March–early April 

and mid–late April, when all sites exhibit soil moisture drying. In contrast, the correlations 
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decrease to < 0.5 shortly after the event cessations, such as around March 8, March 20, and April 

15, particularly at the sites that are farther away from BCC (the reference site in Figure 9). This 

behavior occurs as the distinct environment at different sites dictate the lag and speed of soil 

moisture drainage following the events. 

Overall, this analysis demonstrates that soil moisture fluctuations at event time scales are 

less uniform throughout the basin than the seasonal fluctuations (Figure 8). These fluctuations are 

site-specific, which reflects the value of dense soil moisture networks that capture a range of soil 

moisture responses during periods of frequent AR activity. During such periods, precipitation is a 

stronger controller of soil moisture behavior than evapotranspiration is (Cao et al., 2020), where 

early soil moisture recession characteristics shortly following the events set the antecedent 

conditions of the subsequent events. 

 

5. Summary and Conclusions 

 We presented new and publicly available near real-time data from a soil moisture network 

across the Russian River Basin and Lake Mendocino Sub-basin in Northern California. The 

network was designed to improve soil moisture representation in distributed hydrologic model 

forecasts under extreme precipitation conditions, such as atmospheric rivers (ARs). The data 

underwent manual quality control to remove questionable values, and a normalization method was 

used to minimize the impacts of possible site-specific biases and uncertainties in applications, such 

as hydrologic model verification and flood forecasting. 

Using the Fourier Transform periodogram and the two-sample t-test, we showed the 

different soil dynamics between the shallow layers (5-20 cm), with diurnal cycle, and the deep 

layers (50-100 cm), with relatively persistent soil saturation. We also found large increases in 
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runoff generation when the event antecedent soil moisture approached field capacity, above which 

the runoff coefficient was on average ~2.6 times greater. However, some events did not produce 

significant runoff despite the high antecedent soil moisture and heavy precipitation. Further 

analysis suggested a groundwater influence on runoff generation, where groundwater recharge 

may have reduced runoff and groundwater exfiltration may have increased runoff. Future studies 

should consider some other variables that may influence the soil moisture and runoff processes, 

such as event total precipitation, event average precipitation intensity, and air temperature.  

We demonstrated lagged soil moisture responses with depth, from ~2-3 hours at near-

surface layers (5-10 cm) to ~11 hours at the deepest layer (100 cm). We also showed strong site-

to-site correlations of 2-minute soil moisture observations at seasonal scales, especially in response 

to ARs. This pattern indicated that precipitation was a dominant controller of seasonal soil 

moisture fluctuations throughout the Russian River Basin. However, these site-to-site correlations 

were highly variable at event time scales, depending on the distance between sites and antecedent 

soil conditions. Stronger correlations occurred when the time between two or more events was 

short, so the soil remained relatively wet through time and space (e.g., mid March 2018), and after 

event cessation during soil moisture recession (e.g., end of April 2018) (Figure 9). 

These results demonstrated the ability of a high-resolution, multi-depth soil moisture 

observation network to capture the spatial and temporal soil moisture variabilities and 

consistencies throughout the Russian River Basin. Lessons that we drew from this analysis for 

hydrologic modeling in the watershed were that:  

1) With multi-depth sensors, statistical tests can be used to identify which depths show 

differences in soil moisture dynamics (e.g., presence of saturation and diurnal cycles) and, 

therefore, should be used by modelers to define distinct model layers, 
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2) Understanding the factors that influence event runoff ratio during a precipitation event, such 

as soil moisture and antecedent runoff, enables us to design evaluation techniques, such as 

identifying the soil moisture threshold that induces runoff, and indicates soil moisture 

processes that distributed hydrologic models should replicate, 

3) Analysis of decreases in soil moisture spatial correlation helps identify which areas of the 

watershed would benefit from a distributed calibration of model parameters related to soil 

moisture.  

Ultimately, our findings emphasized the importance of a dense soil moisture monitoring network 

for monitoring and modeling runoff generation during extreme runoff events, and to ensure 

realistic representations of soil properties and heterogeneity, soil moisture/water drainage 

processes, and groundwater influence in hydrologic models.  

 

Data Availability Statement 

Soil moisture data as well as other raw data retrieved from CW3E’s hydrometeorological network 

can be directly accessed in text format via the CW3E ftp data portal where they are continually 

updated in near real time (ftp://sioftp.ucsd.edu/CW3E_DataShare/CW3E_SurfaceMetObs/). Soil 

moisture and other raw data from HMT network can be accessed through a portal hosted by NOAA 

Earth Research and Science Laboratory’s Physical Sciences Division (PSD; 

ftp://ftp1.esrl.noaa.gov/psd2/data/processed/SoilMoisture/). Additionally, NOAA PSD’s Profiler 

Network Data and Image Library stores both CW3E and HMT data 

(https://www.esrl.noaa.gov/psd/data/obs/datadisplay/). The processed CW3E soil moisture, the 

raw and processed stream discharge data, and the stream rating curve information for this paper 

are available on Sumargo et al. (2020b) repository. 

ftp://sioftp.ucsd.edu/CW3E_DataShare/CW3E_SurfaceMetObs/
ftp://ftp1.esrl.noaa.gov/psd2/data/processed/SoilMoisture/
https://www.esrl.noaa.gov/psd/data/obs/datadisplay/)
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Table 1. A list of the 6 CW3E and 13 HMT surface meteorological stations monitoring soil moisture in the Russian River Basin, with 

the soil clusters for the 6 CW3E and 3 HMT stations in the Lake Mendocino Sub-basin (boldface station IDs) included.  

Station ID Network Latitude 
(°) Longitude (°) Elevation (m) Period Soil 

Cluster 

Soil Depth Availability 
5 

cm 
10 
cm 

15 
cm 

20 
cm 

50 
cm 

100 
cm 

Boyes Creek Canyon BCC 

CW3E 

39.3405 -123.1635 317 2017-present C5 ✓ ✓ ✓ ✓ ✓ ✓ 
Deerwood DRW 39.1977 -123.1599 280 2017-present C2 ✓ ✓ ✓ ✓ ✓ ✓ 
Hell's Delight Canyon HDC 39.2686 -123.1486 646 2017-present C5 ✓ ✓ ✓ ✓ ✓ ✓ 
North Cow Mountain NCM 39.1796 -123.08 1031 2017-present C4 ✓ ✓ ✓ ✓ ✓ ✓ 
Potter Valley North PVN 39.3613 -123.1132 420 2017-present C4 ✓ ✓ ✓ ✓ ✓ ✓ 
Windy Gap WDG 39.2344 -123.0049 834 2017-present C3 ✓ ✓ ✓ ✓ ✓ ✓ 
Cazadero czc 

HMT 

38.6107 -123.2152 478 2005-present   ✓ ✓ ✓ ✓ ✓ ✓ 
Healdsburg hbg 38.653 -122.8732 70 2006-present   ✓ ✓  ✓  

Hopland hld 39.003 -123.1209 164 2010-present   ✓ ✓  ✓  

Lake Sonoma lsn 38.7187 -123.0537 396 2010-present   ✓ ✓  ✓  

Middletown mdt 38.7456 -122.7112 972 2016-present  ✓ ✓ ✓ ✓   

Potter Valley ptv 39.3357 -123.1383 303 2011-present C2  ✓ ✓  ✓  

Potter Valley Central pvc 39.3209 -123.1028 289 2016-present C1 ✓ ✓ ✓ ✓ ✓ ✓ 
Potter Valley West pvw 39.3204 -123.1802 518 2016-present C2 ✓ ✓ ✓ ✓ ✓ ✓ 
Rio Nido rod 38.5073 -122.9565 39 2006-present   ✓ ✓  ✓  

Redwood Valley East rve 39.3143 -123.1869 520 2016-present  ✓ ✓ ✓ ✓ ✓ ✓ 
Redwood Valley North rvn 39.3406 -123.2297 294 2016-present  ✓ ✓ ✓ ✓ ✓ ✓ 
Redwood Valley West rvw 39.3014 -123.2601 631 2016-present  ✓ ✓ ✓ ✓ ✓ ✓ 
Willits wls 39.3463 -123.3166 594 2010-present     ✓ ✓   ✓   
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Figure Legends 

Figure 1. Terrain base maps showing the locations of RHONET soil moisture observations (left), 

including the HMT and CW3E stations within the Lake Mendocino Sub-basin (right). Also shown 

is a California map with pointers on Russian River Basin and Bodega Bay ARO site (top left inset). 

The CW3E and United States Geological Survey (USGS) stream gauges are also shown, which 

are parts of the RHONET in the greater Russian River Basin as well as within the Lake Mendocino 

sub-basin. Orange contours delineate areas that drain into five CW3E stream gauges. 

 

Figure 2. Lake Mendocino sub-basin MAP time series from October to May of WY 2019, with 

AR events shaded in gray. 

 

Figure 3. An illustration of a framework for identifying soil moisture threshold behavior, using 

soil moisture VWCn at BCC and runoff per unit area derived from the nearby BYS stream 

discharge. The precipitation event numbers are based on the WYs 2018–2019 record. The 

threshold, as approximated by the vertical black line, is the soil moisture value at which runoff 

generation becomes efficient. Different arrow line types denote different segments of the process: 

Segment 1 denotes the VWC normalization; Segment 2 denotes the precipitation event 

identification; Segment 3 denotes the runoff coefficient computation.  

 

Figure 4. Left: WYs 2018–2019 soil moisture VWC time series at BCC, NCM, and pvc sites at 6 

different depths, representing riparian, montane, and valley environment, respectively. Right: 

April 2018 9-station mean precipitation (gray bars) and VWC (colored lines) time series at the 

same stations and depths as in a-c. The dashed-line boxes demarcate the April 2018 period. 
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Figure 5. Lag correlations between precipitation and VWC at 9 CW3E and HMT sites in the Lake 

Mendocino Sub-basin (color lines), averaged over 51 precipitation events in WYs 2018-2019, with 

the 9-site average plotted in thick black line. Time lags > 0 indicate the delay in VWC response. 

Different panels represent different soil depths, from 5 cm (top) to 100 cm (bottom). The vertical 

lines denote the time lag at which the maximum correlations for the 9-site average occur. 

 

Figure 6. (a) FT power spectra of 10-cm VWCs (representing shallow soil layers) at 9 sites in the 

Lake Mendocino Sub-basin, showing the strength of VWC fluctuations at diurnal (24 hours) and 

event/synoptic (71-168 hours) time scales. The individual sites are plotted in pastel colors, while 

the 9-site averages are plotted in bold colors. (b) Same as (a), except for 100-cm VWC 

(representing deep soil layers). (c) FT power spectra of the 10-cm and 100-cm VWCs at BCC. 

 

Figure 7. Event antecedent soil moisture VWCn vs. RC plots at 5 different stations where both 

soil moisture and stream observations are available: (a) BCC, (b) DRW, (c) HDC, (d) NCM, and 

(e) WDG. Color shading represents antecedent runoff per unit area based on each associated stream 

gauge, showing the variability across sites of soil moisture threshold behavior and its relationship 

to antecedent runoff, a groundwater proxy. 

 

Figure 8. Pearson’s correlation maps of 2-minute soil moisture VWCn with BCC site at 10-cm 

depth for (a) autumn (Oct–Dec), (b) winter (Jan–Mar), (c) spring (Apr–Jun), and (d) summer (Jul–

Sep) of WYs 2018-2019. The thick black contours demarcate the Lake Mendocino Sub-basin. The 
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sites where the correlations are statistically significant at 99% significance level are outlined in 

black. 

 

Figure 9. Mid February–April 2018 time series of (a) hourly precipitation, (b) 2-minute soil 

moisture VWCn at 10-cm depth, and (c) ±7-day centered cross-correlations of 2-minute soil 

moisture VWCn at 10-cm depth with the BCC site. The gray shadings demarcate AR periods. The 

plot colors on the middle and bottom panel denote site distances from BCC. 
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Graphical Table of Content 

We present a publicly available, high-resolution soil moisture dataset from Russian River Basin in 

California designed to assess soil moisture controls on runoff generation under atmospheric river 

conditions. Analyses of the results demonstrate that: (1) Multi-depth sensors are valuable for 

identifying which depths show differences in evapotranspiration and soil saturation dynamics, (2) 

Understanding the factors influencing event runoff ratio during a precipitation event enables us to 

design evaluation techniques and indicates soil moisture processes that distributed hydrologic 

models should replicate.  

 

 



 

Figure 1. Terrain base map showing the locations of 19 CW3E and HMT soil moisture stations 

and 6 CW3E stream gauges in Russian River Basin and Lake Mendocino Sub-basin in California.  
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